
A Gentle Introduction To SuperSpriteSurface for REALbasic
Tutorial 1

by Thomas Cunningham February 2006
mauitom@maui.net

1

Summary Of This Document

This powerful alternative to the build-in classes for using
sprite and sprite animations in your REALbasic applications.
The demo’s that come with SuperSpriteSurface (SSS) are ex-
cellent, but may intimidate someone new to programming,
so consider this tutorial and associated demo projects as a
kinder introduction to SSS.

Platform Supported

As of this writing, the SuperSpriteSurface (SSS) is for the
Mac platform only. However, John has a Windows version
in the works and should be released soon. I’m using Rb
5.5.5 for this project, however, if you are using Rb2005 or
Rb2006, everything should work the same. Just keep in
mind, my screenshots will not look like your IDE.

The SuperSpriteSurface class is written by John Balestrieri
<mrjohn@tinrocket.com> and is available from John’s web
site http://www.tinrocket.com/. It sells for $29.95. A demo
version is available for download. And if you end up using
these classes, pay the man!

Assumptions

I will assume that you are somewhat familiar with REALba-
sic (Rb), but I do include screenshots to help you.

A Sprite Surface

A sprite surface is used in computer programming to, most-
ly, display moving graphics. SSS, like the built-in Sprite Sur-
face, is used as a two dimensional (2D) display area. It is very
similar to the Canvas class in some regards, but has been
extended to handle animations of images wrapped in sprites.
Here is a definition of a sprite from pcwebopaedia.com.

A graphic image that can move within a larger graphic.
Animation software that supports sprites enables the
designer to develop independent animated images that can
then be combined in a larger animation. Typically, each
sprite has a set of rules that define how it moves and how
it behaves if it bumps into another sprite or a static object.

A sprite does not live on its own, it must be attached to a

sprite surface. Sprites are mainly used in computer games.
Scrolling top down and side action games are the most com-
mon types of games that use sprites.

The SuperSpriteSurface

So why should you consider purchasing this group of classes
when Rb comes with this built-in capability? Simply put,
SSS is better than the classes what come with Rb.

Its underlying display technology uses OpenGL (OGL).
Most, if not many of today’s modern games use OGL to dis-
play there screen graphics. It’s fast, it’s pretty eye candy.

SSS has a powerful framework to detect collisions. Collisions
— that is detecting when your sprite say, hits a wall — is a
very big deal if you want your game to behave properly. It
sounds easy, but detecting and responding to collisions is
very complicated.

The SSS Application Programming Interface (API) was
purposely designed to be similar to the built-in Rb classes
for ease of use. However, don’t be fooled, overall, using
sprites is not what I would term easy. There are multiple
steps to making your sprites and sprite surface look and
work properly. Using sprites in computer programming is a
huge subject, as a quick search online will reveal. I will only
scratch the surface in this tutorial in the hopes that it will
get you going with SSS.

SuperSprites

A sprite is really just an image. John names his sprites, Su-
perSprites! To make a nice game you will need lots of images
to use. I will not get in to this at all. In fact, this tutorial
and its associated demo Rb projects will not use any external
artwork. I will use the drawing functions that come with
Rb to use as our image. This keeps things simple so we can
concentrate on the basics. But, let’s look at one sequence of
images that come with SSS as a little background.

2

Color Image Mask Image

These are the two shield images John uses in his Knights
Demo. Most sprite images will be used this way, that is, one
color image and one mask. The mask is used to make the
image look pretty and is used to give the image a look of
transparency. Again, I’m not going to discuss this subject,
but I did want you to see what the concept of a sprite image
is about.

Please take note of the black backgrounds of the images
and that shades of gray are used in the mask image. You do
need to know that much about sprite images. When these
images are combined, which you will learn how to do in a
few pages, they will appear on the sprites associated surface
like this.

The Above Two Images Combined On A Blue Background

That screenshot shows the shield on a SuperSpriteSurface
that has a blue background. Notice how John created his
mask to get this look. Study it a bit, it’s a bit tricky, at least
it is for non-artists such as myself.

The SuperSprite has three Events which you will use to
animate, move or otherwise interact with you sprite. This is
based on the Rb model of an events based API. The Super-
Sprite class has an assortment of Methods and Properties
associated with it. Please refer to the HTML documentation
that come with SSS. For our little beginner project, we will
only use the Image and Position properties.

The Surface

OK, let’s move on to the surface, the SuperSpriteSurface.
Again, a sprite must be used, or more formally, attached to a
surface to function. The SSS is a subclass of an Rb Rectangle,
so it’s a RectControl object in Rb. It has three new Events in
addition to the Super’s Events, FrameworkMessage, Next-
Frame and Register.

The FrameworkMessage and Register Events are to check
and see if you’ve purchased a license from John.

The NextFrame event represents each time the surface
refreshes itself. The elapsedTime parameter of this event lets
you know how many seconds has elapsed since it displayed
the last “frame”. Internally, you get to use one of two modes,
threaded or non threaded, to control which mode you want
to use to drive the sprite animation sequences. I just suggest
you use the threaded mode and leave it at that. When you
know what you’re doing later, you can experiment with the
mode.

The SSS has ten additional properties associated with it. We
will just concentrate on two of them for now, the Back-
Color and Sprites properties. The BackColor should be clear
enough, you get to change the color of the surface to whatev-
er you want. The default color will be black. The combined
shield image above shows this property set to a blue.

Of the five Methods on SSS, please take note of the Run, Re-
set and Stop methods. This should give you some indications
on the API used to tell SSS what it should be doing.

The Sprites property can be looked at as an array of sorts. It’s
really a SuperSpriteGroup object, but it helps to simplify the
concept if you think of it as the array of sprites attached to
the surface. Once you create a sprite and assign it an image,
you attach it to the surface via this property. You can always
interrogate the surface and retrieve properties of the sprites
attached to the surface via the Sprites (SuperSpriteGroup)
methods.

Project One

Step One

And away we go, let’s get started. Begin a new project
and drag the SuperSpriteSurface 1.0 folder to your project
window.

3

Click on the disclosure triangle of this folder.

Here you see the guts of the SSS. All you will need from this
folder is the SuperSpriteSurface. So open Window1 and drag
this class in to Window1. Resize it and position it similar to
this.

Run the project and you will see a nice black square in your
window. As I mentioned above, the default background
color of the surface is black.

Please note something at this stage, the surface is not “run-
ning”. Remember above when I asked you to observe the
methods of the surface? Remember the Run() Method? We
have not told the surface to run yet, so it is just sitting there.
If you did call the Run method at this point, it would still
look the same since we have not attached any SuperSprites
to it.

This points out that you can use SSS like a canvas, that is,
to display non moving images. Why might you do this?
Perhaps just to get the nice look that OpenGL can give you,
or perhaps you want to make a slideshow application.

Step Two

OK, let’s show something on our SuperSpriteSurface, a
SuperSprite. The easiest way to do this is to use a subclass.
Go to File:New Class and in the properties window, assign
Class1’s super to SuperSprite. Rename class1 to TestSuper-

Sprite. Double click TestSuperSprite and click to reveal its
Events().

Again, by examining the Events() that John has given you,
you can gain some insight in to what a SuperSprite really is.
It is defined as an object that can be Constructed, an object
that can Collide and an object that has a NextFrame. Simple
really.

Let me bring up one thing that tripped me up when I first
started with SSS. Please note that both a SuperSprite and a
SuperSpriteSurface have a NextFrame() Event. Don’t use the
NextFrame() event of the surface. To me when I first started,
it seemed like the place to place code. Wrong. Think in a
object oriented fashion. The sprite is the object that should
know what it should do as your animation is running, not
the surface. The surface is just a container that manages the
sprites that are attached to it, not a controller of how its
objects should behave, each SuperSprite should own this
responsibility.

Step Two A

I want to keep this tutorial as simple as I can think of, so I
don’t want to involve any artwork. But our sprite needs an
image. I purpose that we use the DrawString method on the
graphics class to produce our image. It’s not very pretty or
very interesting to look at, but that’s not the point here, we
just want to see how SSS operates.

We will create our image in the Constructor() Event() of our
SuperSprite. We want to build an Rb picture object using
a color image and a mask image. We will try and duplicate
what we observed above in the shield images. Here is my
code along with my comments.

TestSuperSprite Constructor Code:

// create a picture to use as a sprite.

Dim colorPic, maskPic As Picture

// create a new Rb picture

colorPic = NewPicture(100,40,32)

// create an all black background

colorPic.Graphics.ForeColor = RGB(0,0,0)

colorPic.Graphics.FillRect 0,0,100,40

// draw some Red text at size 24.

colorPic.Graphics.ForeColor = RGB(200,0,0)

colorPic.Graphics.TextSize = 24

4

// must move it down an to the right to see it!

colorPic.Graphics.DrawString “Test”, 10, 20

// create the mask at the same size as the colorPic

maskPic = NewPicture(100,40,32)

// as above, create an all black background

maskPic.Graphics.ForeColor = RGB(0,0,0)

maskPic.Graphics.FillRect 0,0,100,40

// this is our white to gray mask color,

maskPic.Graphics.ForeColor = RGB(200, 200, 200)

// draw the same as colorPic

maskPic.Graphics.TextSize = 24

maskPic.Graphics.DrawString “Test”, 10, 20

Again, nothing fancy for now we have a Rb picture object to
work with. We now need to assign this to our SuperSprite
Image property. But uh oh, as I look at the SSS documents,
this property is not an Rb picture but a SuperSpritePicture.
We have one more layer object to learn about and use with
SSS.

The SuperSpritePicture class has ten different Methods! -
Gulp! Ah, but they are all constructors. John wanted you to
be able to create a SuperSpritePicture from as many sources
as possible and to be able to use a mask or not. This is very
convenient, after all, as I said, a sprite is really just an image,
so SSS gives you many options to load up pictures to create
SuperSprites - cool.

So let’s use one these methods to transform our Rb image to
a SuperSpritePicture class and transform it to our Super-
Sprite Image property. We place this code below what we
wrote above.

// transform this Rb picture to a ssPicture

Dim ssPicture As SuperSpritePicture

ssPicture = New SuperSpritePicture(colorPic, maskPic TRUE)

// assign it to our image property

Me.Image = ssPicture

And that’s it, we now have a sprite that our surface can deal
with and we have an image that our sprite can deal with.
As a note, the True parameter has to do with an internal
implementation dealing with OpenGL, setting it to true
will make your image look “smooth”.

For now, that’s it with our SuperSprite class, I will come
back and use its NextFrame event a little later in this tuto-
rial.

Our next design consideration is which class should handle
where our SuperSprite will be placed on our SuperSpriteSur-
face and which class should create our TestSuperSprite. I will
delegate these responsibilities to our surface as part of an
initialization process.

Step Three

We move on to Window1 and our SuperSpriteSurface. Let’s
use our SuperSpriteSurface1 objects Open() event to put all
of our pieces together. As I stated early on, learning to use

SSS is not easy, not hard, but does take some planning and
a few steps. My code and comments from the Open() event
will explain the next few steps.

// Always Reset your surface

Me.Reset

// Make my background color blue

Me.BackColor = &c33669A

// Make our animation mode threaded

Me.Threaded = True

Me.ClickToStop = False

// Create a TestSuperSprite

Dim tempSprite As New TestSuperSprite

// Our constructor takes care of an image.

// But remember, it does not PLACE the sprite anywhere

tempSprite.Position = New TinrocketVector2D(10, 40)

// we now attach our new sprite to the surface

Me.Sprites.Append(tempSprite)

// Run!

Me.Run

A few housekeeping steps at first gets our surface in a state
we want it to run. We next create a SuperSprite and position
it using a two dimensional vector class that John includes
with SSS, although you could always use Rb’s 3DVector
class, ignoring the Z property or just assign to the X and Y
properties of Position.

We attach our sprite to the surface and tell it to run. Feel
free to run your project now and see your beautiful work!
And be sure and see what happens if you do NOT make that
last call for the surface to run.

Step Four

To finish off our first example, lets make our SuperSprite
move, after all, that’s what sprites are supposed to do! We
now will use the NextFrame event of our subclass, TestSu-
perSprite. This event has a very useful parameter, elapsed-
Time. If you test to see what value this parameter passes each
time it fires, you will find it is a very small number, like
around 0.0006 most of the time.

The concept to use this parameter and this event is simple.
You scale the number as John does is his demo’s. It’s just
math and fiddling around with the values to get your sprite
to move in a manner that you want. An online search on the
subject of time based movement is plentiful to learn more on
this subject and as mentioned, John has a few nifty examples
in his demo’s so be sure and study them.

For this project, all I want to do is move our sprite to the
right, by adding to the sprites Position.X property at a
certain rate. Once the sprite reaches the right side of our
surface, I will reposition it on the left side again. Nothing
fancy. I place an adjuster factor to make it move at a lazy
pace. My NextFrame event code looks like this.

Const adjustor = 20

5

Me.Position.X = Me.Position.X + (adjustor * elapsedTime)

If Me.Position.X > Me.SuperSpriteSurfaceControl.Width Then

 Me.Position.X = - 40

End

Run the project and you will see your sprite move along in a
nice smooth manner with no flicker.

Winding It Up

That’s it for this first installment on how to use SSS. Hope-
fully, I’ve got you up and running with this very simple
project that explains some of the steps required to create a
sprite and move it in a sprite surface. We’ve only scratched
the surface. The follow up to this tutorial will be to imple-
ment the Collision() Event of our SuperSprite. The project
name for this tutorial is Tutorial SSS_1.rb.

